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ABSTRACT

A method is described for least squares fitting an ordered set of data in the
plane with a free-form curve with no specific function or parameterization given

for the data. The method is shown to be effective and uses some techniques from
the field of Computer Aided Geometric Design (CAGD). We construct a piecewise G !

cubic Bézier curve from cubic curve segments which have as their initial end
points, or knot points, some of the data points. The parameters for the curve are:
the knot points, the angles of the tangent vectors at the knot points, and the
distances from each knot point to the adjacent control points. The algorithm is
developed and three solution curves are presented: Globally Optimized Only
(GOO), Segmentally Optimized Only (SOO), and Segmentally then Globally

Optimized (SGO).
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I. INTRODUCTION
A. OBJECTIVES

This thesis is concerned with a practical method for
fitting an ordered set of data in space with a free-form
curve, with no specific function or parameterization given for
the data. Problems such as this arise routinely in a variety
of disciplines from the Arts to Engineering and Science. The
techniques presented here are for data in the plane, R?, but
can be adapted to many dimensions.

The purpose of this study is to implement algorithms in
MATLABR to further explore the feasibility of an automated
routine which will examine an ordered set of data and, with
possible user interaction, produce a fitted curve within
specified conditions and tolerances. In considering the
problem, we seek to fit a G' cubic Bézier curve to the
ordered set of data using least sguares approximation.
Emphasis is given to those aspects of problem analysis and

formulation leading to solution algorithms and procedures.
B. OVERVIEW

Polynomials are widely used for data approximation and
curve fitting, primarily because they are relatively simple
functions. Their sums, differences, and products are
polynomials, as are their derivatives and integrals. Further
more, a shift in the origin of the coordinate system or a
scaling of the independent variable for a polynomial produces
a polynomial (Carnahan, 1969).

According to Rivlin (1981), one of the most direct ways
to approximate a function on an interval, or a finite set of
points, 1is to obtain a polynomial which takes on the same
values as the function at some points in the domain of the
function. This is useful if we can show that a polynomial can

provide a "good approximation" to a given function f(x) . By




"good approximation," we mean the ability to constrain the
error of a polynomial approximation to the function to an
arbitrarily small value. It turns out that justification
exists in the form of the Weierstrass approximation theorem

which we present here without proof (Ralston, 1965):

1.1 THEOREM. (Weilerstrass approximation theorem)
If f(x) 1is a continuous function on a finite interval
[a,b] , then, given any € > 0, there exists an n[=n(e)] and

a polynomial P (x) of degree n such that |f(x)-P (x)| < ¢

for all x in [a,b].

Given the assurance that some polynomial p(x) does
exist to approximate every continuous function f(x), we now

look to fit an ordered set of data points (x,,y,), which are
assumed to satisfy y, = f(x,) for some continuous function

f(x) , by approximating f(x) by a polynomial p(x) . One of
the requirements we seek to enforce in fitting the data is
that the process be unambiguous. Another is to find a fit
which minimizes any deviations between the data points and the
curve. Assuming the errors are negligible in one of the two
measurements of our data, the usual criterion would be to
minimize the sum of the squares of the error in the other,
this is the linear least-squares principle and is commonly
called a least squares fit.

Fitting a set of data by least squares has many benefits,
one of which 1is the statistical principle of maximum-
likelihood. The principle says, "If the measurement errors
have a normal distribution and if the standard deviation is
constant for the data, the fitted line by minimizing the sum
of the squares is shown to have slope and intercept having
maximum-likelihood of occurrence" (Mendenhall, 1990). Another

benefit is that a unique solution for a given set of data is
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guaranteed.

Now that we have established some fitting criteria for
the polynomial, the next step is to decide upon the degree.
For a set of data with n+1 data points, one strategy for
choosing the degree of the polynomial is to fit some or all of
the data points with a polynomial of degree at most n that
interpolates the points. This is a poor strategy because,
while it minimizes the distances between the curve and the
data points, a higher degree polynomial amplifies errors in
the input data. Another reason is that while the polynomial
approximates the data to within some required degree of
accuracy, higher degree polynomials have an inherent localized
"bump" or oscillation effect (Gerald, 1989).

When the degree n of an interpolating polynomial p(x)
1s large we encounter undesirable oscillations because there
may be as many as n-1 maxima and minima. Further, as the
number of points to be approximated gets larger and larger,
the oscillations may also increase. In most cases, an
intermediate degree, usually three, polynomial is the best
choice.

A remedy to the undesirable effects of higher degree
interpolating polynomials 1s to construct composite curves
which fit lower degree polynomials to successive groups of
data points. This process produces piecewise interpolating
polynomial functions. Due to their flexibility, these
functions are more widely used in least-squares fitting.
However, although they can be continuous functions, they will
usually have discontinuities in slope at the joining points of
their successive segments. For most applications, this
behavior is unacceptable and must be avoided.

To that end, consider a fitted piecewise interpolating
polynomial p(x) for function y = f(x), and its points

Xio) < X; < Xppq If we assume both y and the first

i-1




derivative y to have continuity in value at each point x;

along the polynomial, then the resulting piecewise function
will have continuity of slope at all data points and be
"smooth" everywhere.

Piecewise functions often involve segments of cubic
polynomials. This is because cubic polynomials offer not only
the opportunity to match up slopes but also curvature when
joined. The most common of these functions are called cubic
splines and are used extensively in approximation,
interpolation, and data fitting. One disadvantage to cubic
splines is that their interpolant derivatives may not agree
with those of the function being approximated, even at the
points joining the segments.

An alternative to the piecewise interpolating polynomial
curve is to create a curve using approximation techniques that
builds on its attractive qualities and does not, or at least
is not required to, pass through all the points in the data
set. Rather, some of the points are used to control the shape
of the resulting curve. For such a curve, its x and y
components are parameterized in terms of another variable t,
for example, and equations for the points (x(t),y(t)) on the
curve are called parametric equations. The variable t 1is
called the parameter for the curve. One such curve that can
be constructed in this manner and is of special interest is

the Bézier curve.

C. PROBLEM STATEMENT

For a given ordered set of data in the plane,

Si=(Xj;Y]-) ’ i=l/2,3,-..,n,
we wish to find the curve that minimizes the sum of the
squares of the deviations from each data point to the nearest

point on the curve. In solving the problem, we will fit the

data points S; with a piecewise G!' cubic Bézier curve by a




least squares criteria. We use MATLAB’s "fmins" optimization
routine to find three solutions to the problem: a globally
optimized only (GOO) fit, a segmentally optimized only (SOO)
fit, and a segmentally then globally optimized (SGO) fit.

D. RESEARCH METHODOLOGY

The research for this thesis was accomplished in five
phases. First, information about the subject was gathered.
Second, the computer algorithms of Holmes’ (1993) were
evaluated for operation and revised where applicable. Third,
new algorithms were implemented. Fourth, performance of the
algorithms using a variety of data sets presenting unique
challenges was examined and results were tabulated. Lastly,
conclusions were drawn and recommendations for further

research were considered.
E. THESIS ORGANIZATION

This thesis is organized into five chapters. Chapter II
is a discussion of the concepts and theory used to develop
material introduced in Chapter III. The discussion covers
some treatments found in Ross (1980), Farin (1990), and
others. Chapter III is a discussion introducing Bernstein
polynomials, Bézier curves, and other applicable topics. It
follows treatments found in Gerald (1989), Farin (1990), and
others. Chapter IV describes the implementation of algorithms
to fit a G! cubic Bézier curve to an ordered set of data
points in the plane. Chapter V contains results, conclusions
and some recommendations for future work. An appendix 1is
provided with some flow charts for the algorithm and the

programs. Further, a tutorial is available 1if desired.







II. BACKGROUND
A. CONTINUITY OF FUNCTIONS

The study of calculus usually provides the first
introduction to continuous functions. Recall that for a
function f:

« the domain of f, written dom(f), 1is the set S upon
which f is defined.

« £ is a rule or formula which assigns a unigque value
f(x) to each xe€ dom(f) .
We will be interested in functions f where the domain of f
is a subset of the reals, dom(f) ¢ R, and where f(x) e R for
all xe dom(f) .

In most cases, the domain of a function will Dbe
specified. However, when it is not, the domain is understood
to be the natural domain or largest subset of R on which the
function is "real-valued" and well defined. As an example,
(xe R : x=# 0} is understood to be the natural domain of
f(x)=1/x while we normally just write f(x)=1/x. This leads

us to the definition of a continuous function.

2.1 DEFINITION. Let f be a real-valued function whose domain

is a subset of R. Then f is continuous at X in dom(f) 1if,

for every segquence (x,) 1in dom(f) converging to x,, we have

n

1im f(x) = f(x,) . If f is continuous at each point of a set

S c dom(f), then f 1is said to be continuous on S. Function f

is said to be continuous if it is continuous on dom{ f) .

Definition 2.1 suggests that values f(x) are close to

f(x,) whenever the values Xx are close to x;. We now

introduce and prove a theorem about continuous functions which

states this more formally.




2.2 THEOREM. Let f be a real-valued function whose domain is

a subset of M. Then f 1is continuous at x,€ dom(f) if and

only 1if for each € >0 there exists & >0 such that

x€ dom(f) and |x-x,| <8 implies | f(x)-f(x,)]| <¢.

To prove 2.2, suppose that its conclusion holds and
consider a sequence (x,) in dom(f) such that limx, = x,.
Now we must show that limf(x,) = f(x,) . So choose &€ > 0.
From 2.2's conclusion, there exists 06 > 0 such that when
xe dom(f) and |x-x,| <8 then |f(x)-f(x,)] <¢. Since
limx, = x;,, there exists a number k such that n >k implies
| x,-x,| < 9. It then follows that n >k also implies
| f(x,) -f(x,)| < €. This proves limf(x,) = f(x,) .

For the second part, we assume that f is continuous at x,
but that 2.2’s conclusion fails to hold. This means there
exists € >0 such that the dimplication "x € dom(f) and
| x-x,] < 6 implies | f(x)-f(x,)| <e" fails for each & > 0.
Particularly, when 0 =1/n the implication fails for every

ne N. Therefore, for every ne N there exists x, in dom(f)

such that |x,-x,|< 1/n and | f(x,)-f(x,)|2 €. Thus we have
limx, = x, . But, since | f(x,)-f(x,)|2 ¢, we cannot have
lim f(x,) = f(x,) for all n. However, this is contradictory
to our assumption that f is continuous at x,. Therefore,

2.2’s conclusion must hold. W
Uniform continuity

We now introduce the definition of a uniformly continuous

function:

2.3 DEFINITION. Let f be a real-valued function defined on




a set ScR. Then f is uniformly continuous on S 1f for
every ¢ > 0 there exists 6 > 0 such that x,ye€ S and
| x-y| < & implies | f(x)-1f(y) | <e. When f is uniformly

continuous on dom(f), we call f uniformly continuous.

There are some important notions inferred by referring to
a function as uniformly continuous. First, uniform continuity
alludes to the function f and the set wupon which it 1is
defined. It makes very little sense to say that a function 1is
uniformly continuous at a point. Second, looking at
definition 2.3, we note it is sometimes very useful to know
when a & > 0 can be chosen to depend solely on & > 0 and set
S, rather than 0 depending on the particular point Xx;.

We now present and prove an important theorem on

functions that are uniformly continuous:

2.4 THEOREM. If f is continuous on a closed interval [a,b],

then f is uniformly continuous on [a,b] .

To prove 2.4, assume that f 1s not uniformly continuous
on [a,b] . Then there exists & >0 such that for every 0 > 0
the implication "|x-y| <8 implies [ £(x)-£(y) | <e" fails.

This means that for every & > 0 there exists x,y € [a,b] such

that |x-y| <8, however, |f(x)-f(y)| 2e. This means for
each ne N there exists x,,¥, € [a,Db] such  that
|x, -y, | <1/n, yet |f(x,)-f(y,)| 2¢e. From the study of

bounded sequences, we know "every bounded sequence has a
convergent subsequence", this 1is the Bolzano-Weierstrass

theorem. This tells us in this case that a subsequence (X, )

of (x,) converges. Further, if 1lim,,, X, =X,, then
k

x, € la,b] . Similarly, we would also have lim,_. ¥y, = X, -

Now, since f is continuous at Xg s we have




lim,,, fi(x,) =1lim_, £(y,) = £(x) . Thus we have

k

lim,,, [f(x, ) -f(y, )] =0. But, since | f(x,) —f(ym)l 2 e for

k

all k, there is a contradiction. Hence, our assumption must
be false, and we conclude that f is uniformly continuous on

[a,b]. N

The integrability of continuous functions on closed
intervals is an important application of uniform continuity.
For more information on this and other topics from analysis,

see Ross (1980).

B. VECTOR SPACES

Most of us, at one time or another, have used the

Cartesian coordinate system spaces, R? and R*, to describe or
investigate physical quantities such as position, velocity,
and acceleration. These quantities are sometimes referred to
as "geometrical vectors" or "directed line segments", so named
because they "live" in a geometrical or physical space. It is
assumed that the reader is familiar with these concepts and
the operations of vector addition and scalar multiplication,
and further, the concept of a vector space.

Let S be the set of scalars or real numbers. A vector
space V will then be defined to be a set of elements

v,,V,,...,V,, called vectors, such that for se€ S and
v,,v, € V, the operation of scalar multiplication produces a

unique vector sve V, and the operation of vector addition

produces a uniqgue vector (v,+v,) € V. Further, for vectors

u,v,we V and scalars r,s € S the following properties are

satisfied:
« the commutative and associative laws of addition.

« the distributive and associative laws of
multiplication.

10




» the existence of an additive inverse.

+ the existence of an additive identity and
multiplicative identity.

For a vector space V so defined, we say V is closed under
the operations of addition and scalar multiplication.

It is easy to show that R" is a vector space for any
positive integer n. See Hill, (1990) and Ross (1980) for

further information.
C. POINTS, VECTORS, AND CONVEX COMBINATIONS

When we write ®", we mean Euclidean n-space. Euclidean
n-space 1s the vector space as described above with the

natural metric,

dix,y) =J(x,-y)? + (%,-y,)% + ...+ (x,-y,)?
and inner product

X - y=lel +X2y2+ c e +Xnyn

We will use certain conventions when working with points and
curves 1in any vector space. For example, the space must have
a coordinate system that does not affect any properties of the
points or curves. In addition, the coordinate system must not
influence any methods we may generate and employ.

While both points and vectors "live" in R”, and may be
described in similar notation such as n-tuples, there is an

important distinction. For any two points p, and p, in a
space, there is a unique vector v,, that is directed from p,
to p,. However, for vector v,,, there are many pairs of
points p;/ P i i# j where v, =p,;,-p,;. To show this, consider
two points p,, p, which describe vector v,, = p,-p,. If v, is

an arbitrary vector in the space, then p,+v, ,p,+v,, the

11




translation of p,,p,, is another pair of points which also
describe vector v, since v, = (p,+v,)-(p +Vv,) . This 1is
because vectors are invariant under translations while points
are not.

Addition and subtraction of vectors is a well defined
operation since vectors are invariant under translations.
However, this is not true of points. Whereas subtraction is
defined and produces a vector, addition is not defined since
different coordinate systems would broduce different
"solutions" (Farin, 1990). Nonetheless, there are "addition-
like" operations defined for points and these are called
affine or barycentric combinations.

The term barycenter means center of gravity. A
barycentric combination is a weighted sum of points such that

the weights sum to one. For instance, point p,

m
b= E W; P;
i=o
where p; € ®* and E:Dﬁ =1, 1s a barycentric combination.

Although p may appear to be the result of an undefined
operation, pointwise addition, we can easily rewrite it as the

sum of a point and vector,

m

b =po+z w; (D;=Py )

1=1
which is defined.
There are certain Dbarycentric combinations whose

coefficients w, not only sum to one, but are also

nonnegative. These are called convex combinations. A convex
combination will always lie inside the boundary of the polygon
made by connecting the points which make up the convex
combination. This is illustrated in Figure 1.

In addition, the set of points composed of all convex
combinations of a point set is known as the convex hull of the

point set. Such a set, the convex hull, is also a convex set

12




pb

pf
p0 p4 ps
point p is a convex combination of the convex hull formed by
points p0. p1. p2. p3. and p4 pS. p6. p7. and p8

Figure 1. A convex combination and a convex hull.

and is distinguished by the property that all points on a
straight line joining any two points in the set is completely
contained within the set. This is also illustrated in Figure
1.

D. AFFINE MAPS

Consider a point pe R’ and a mapping M that maps p as

follows:

UWp = Mp+v 2.1
where M is a 3x3 matrix and ve R a vector. A map as
described in Equation 2.1 is called an affine map. Affine

maps are the most common transformations used to position and
scale objects in computer graphics and computer aided design
(CAD) (Farin, 1990). The definition follows:

2.5 DEFINITION. An affine map is a map W that maps R?
pointwise 1into itself and leaves barycentric combinations
invariant. It may be composed of rotations, scalings, shears,
and translations. Additionally, an affine map leaves ratios

of collinear points unchanged and preserves parallels.

We can show that barycentric combinations are preserved

13




under affine maps by writing p as E:vm;% and recalling

Y w, =1. The proof is as follows:
WY wip) = (3 wipi) * v
= E:MQMI5+-§:MQV

Thus, we see that if WP is an affine map and,
p=Y wp, ;i pp,eR
then
up =Y w,up, ; Hp,Hp; € R

We note that affine maps may be combined to form more complex

maps or decomposed into a series of simpler maps.
E. LINEAR INTERPOLATION

The term interpolation refers to the constraint that an

approximated curve oOr surface fitted to a set of points pass
through the points. Consider a set of points p in DIt

defining a line such that:
p=plt) =p, +t(p,-p) ;i teR . 2.2

The line passes through p, when ¢ = 0 and through p, when
t=1. For 0<t<1, point p lies on the line between p,
and p,. For all other values of t, point p lies on the line
outside of the interval between p, and p,. Hence, we see

that the equation for p, as written in Equation 2.2, is a
barycentric combination of two points.

Intuitively, we may write t as t =0+ ¢t(1-0) ; teR,

14




also a barycentric combination. This shows that t relates to

0 and 1 in the same manner as p is related to p, and p,, a

barycentric combination, see Figure 2. Additionally, we have
mapped three points from the real line, 0,t,1, to three
points, p,,p,p,, in 3-space. By definition, this is an affine
map. Further, we note, without proof, that in the process the
ratios among the points, 0,t,1 and p,,p,p,, 1in their

respective spaces has been preserved (Farin, 1990).

Figure 2. Linear interpolation.

We refer to linear interpolation as being affinely
invariant. Affine invariance is the property in a curve or
surface generation scheme that allows computation of a point
on the curve or surface before or after an affine map is
applied to the point.

While we mapped the interval [0,1] to [p,,p,], we could

just as well have chosen an arbitrary interval [x,y]. To see
this, consider the interval [x,y] as an affine map from
(0,11 . Letting te [0,1] and se€ [x,y], our map is
t = (s-x)/(y-x) . Then, from p(t) = p, + t (p,-p,) , we now have

15




=2 p; + sz
y-x y-X

p(s)

Thus, 0,t,1 and x,s,y and p,,p,p, are all in the same ratio.

This shows that linear interpolation is invariant under affine

domain transformations.
F. PIECEWISE LINEAR INTERPOLATION

Consider a polygon P composed of a series of line
segments connecting points p,,pP;,Pys---/P, € R?. These line
segments each interpolate between points p;,p;, . Hence, P

is referred to as the piecewise linear interpolant PL to the

points p,. When points p; lie on a curve c,
P = PLc

is the piecewise linear interpolant to c.
For an affine map M that maps curve c¢ onto curve HC,

the piecewise linear interpolant to Hc 1is
PLUC = WPLC , 2.3

which is the affine map of the piecewise linear interpolant.
From 2.3, we see that piecewise linear interpolation exhibits
the property of affine invariance.

Also exhibited by piecewise linear interpolation is the
variation diminishing property. This is the property that a
piecewise linear interpolant to a curve has no more
intersections with a plane than the curve. This is
demonstrated in Figure 3. As can also be seen in the figure,

the line joining points p, and p, can cross a plane running

between them in at most one point. However, a curve
connecting the two points can cross the same plane at many

points, see (Farin, 1990).

16




pl

the piecewise linear interpolant to curve ¢ has no more intersections with
plane P than the curve does

Figure 3. The variation diminishing property.
G. FUNCTION SPACES

Recalling the discussion on vector spaces, we INOwW note
that some of the same properties may hold under more abstract
conditions than were previously mentioned. We will therefore
define a "vector space" to be a set of objects in which those
properties mentioned hold and a "vector" will simply be one of
the objects in the space. Consequently, a “"vector" may hold
little, if any, resemblance to a "directed line segment”.

We first consider the set Cla,b] of all real-valued

continuous functions defined over the interval [a,b] . For
the function f(x) = 1/x, f is in C[1,2] because the function
is defined on the whole interval [1,2] . However, f is not

in the set C[-1,1]1, because the function is undefined at
x=0. Letting f and g be elements of Cla,bl, and s be a
real number or scalar, we define addition and scalar
multiplication by (f+g)t = £(t) +g(t) and (sf)t =sf(t) for
all te [a,b]. It is easy to see that f+g and sf are in
Cla,b] and Cla,b] 1is closed under addition and scalar
multiplication. Further, it can be shown that Cla,b] forms
a "vector space" and its "vectors" are functions.

we end with an example of a space from Cla,b] which will
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be of interest in the next chapter.

Example. Consider P , the set of all polynomials of degree
less than or equal to n. For polynomials p,ge€ P, , where
p=a,+tax+t...+a,x" and g=q+gx+...+qg,x", let us define
addition and scalar multiplication by:
p+qg = (ay+b,) +(a,+b,)x+...+(a,+b ) x"
sp = (sa,) +(sa;)x +...+(sa,)x"”
From these definitions, we see that P, 1is closed under

addition and scalar multiplication. In addition, it is easy

to show that P, is a "vector space" (Hill, 1991).
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III. BEZIER CURVES
A. BERNSTEIN POLYNOMIALS

The expression

B (t) = Ef(i)(?)tl(l—t)“” 3.1
for f(t) defined on the closed interval [0,1] 1is the
Bernstein polynomial of order n for the function £f(t) .
Polynomials of the form in Equation 3.1 are named after S. N.
Bernstein who introduced them as part of an especially
eloguent proof of Weierstrass’ approximation theorem, see
Davis (1963), Lorentz (1986), Rivlin (1981), or Ross (1980).
The polynomials have many remarkable properties and have been
linked to a variety of topics to include analysis, divergent
series, moment problems, and probability. In referring to
Bernstein’s polynomials, Lorentz (1986) calls them "the most
important and interesting concrete operators on a space of
continuous functions". Our interest in them lies in their
"good" approximation properties and their use as a basis for
cubic Bézier curves.

We may rewrite Eguation 3.1 as
n j_

B (t) = fl=)B/(t

L5 =% (n) (t)

where the B/(t) are the Bernstein basis polynomials

011/210--111 3.2

Bi(e) = (B)era-en 0.1.2,..

1
1 n

Equation 3.2 is recognizable from probability theory as the
probability density function for the discrete binomial

distribution.
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Properties of Bernstein Polynomials

We now introduce some of the important properties of

Bernstein polynomials:

1. The polynomials exhibit pairwise symmetry over the
interval [0,1], with respect to t and 1-t, and are also
non-negative. Pairwise symmetry is shown by noting:

Bi(t) = By-;(1-¢t)
Non-negativity can be seen by the terms in the expression for

the B/ (t).

n

j=OBF(t) is always one. This 1is

2. For any valid t, Y,

shown as follows:

IEHEIED i (4 SRR N ER SRS
i=0

To \1

Hence the polynomials form a partition of unity.

3. The polynomials satisfy a three-term recurrence relation:
BI(t) = (1-t)B"' + (£)B/7]
with B(t) =1 and B(t) =0 ; i#0,...,n. This is proven as
follows:
B (t) = (?)t"(l-t)“'f
1
= (n_,l)tj(l—t)n-i +(I,l_1)ti(l—t)n_i
1 1-1
= (1-t) B ' (t) + (£) BII{ ()

4. As with all polynomials, their sums, differences, and
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products are polynomials, as are their derivatives and
integrals. And, if the coordinate system origin is shifted or
the independent variable scaled, the transformed polynomials

B (t+a) and B,(st) are also polynomials.

B. BEZIER POLYNOMIAL CURVES

Bézier curves and surfaces are attributed to two men who
developed them independently while working for rival French
automobile companies. P. de Casteljau worked for Citroén
around 1959 while P. Bézier worked for Rénault around 1962.
Both applied the Bernstein polynomials to computer aided
design (CAD) systems used for designing the unigque curves and
shapes required for automobile body panels. De Casteljau’s
work was held as proprietary whereas Bézier'’s design software
system, called UNISURF, was published. Thus the curves and
surfaces bear Bézier’s name. In 1975, W. Boehm obtained two
technical reports attributed to de Casteljau and his work has
since gained prominence (Farin, 1990). The de Casteljau
algorithm for generating a degree n Bézier curve b" 1s as

follows:

de Casteljau algorithm

Given: p,,p,,.--..0, €R* , teR;
form=1,2,3,...,n, and 1=0,1,2,...,n-m,
set
bM(t) = (L-t)bT ' (t) + (£)bI;i(t) ; where bj(t) =b, =p, .

At parameter value t, the point by (t) is on the curve b .

Figure 4 displays the results of the algorithm.
Connecting the points b,,b,, b,,...,b, by straight lines forms

a polygon known as the control or Bézier polygon for the curve
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bO T T T
0 1 1

Figure 4. The de Casteljau algorithm.

b*. The b,, the vertices of the polygon, are called control

or Bézier points. The figure shows a Bézier curve of degree
three or the cubic case. We note the curve is tangent to the
first and last polygon segments and that it is contained by
the control polygon. This will always be true. Lastly, we

see that the point by (t) is on the curve at parameter t as

expected.
We remark that the appearance of Figure 4 also suggests

the points bl (t), may be found using a tabular scheme having

triangular form. This is referred to as the de Casteljau

scheme and will be investigated further when we discuss

subdivision.
For a Bézier curve b?, with n+1l control points
b, =(x;,v;) ; 1=0,...n, we can define the  curve

parametrically by setting
x(t) =Y x,B/(t) y(t) =Y y;Bi(t) . 3.3
1=0 i=0

for 0Lt<1, where the Ej;oBf(t) are the Bernstein basis

polynomials. (The Bernstein polynomials serve as a blending or
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basis function for the curve.) Expanding the expressions in
3.3, we see a Bézier polynomial curve has the following

parametric form:

xuﬂ=(l-tho+n(l—U”*(de+“.+n(1-w(tW”xwl+(thn,
y(t:)=(l—t)”yo+11(l—i:)“‘1(t:)y1+...+n(1—t)(t:)”“ly”_.l + (E)"y, -
We note (x(0),y(0)) =b, and (x(1),y(1)) =b,, again proving

that the curve passes through the endpoints of the control

polygon formed by the b, as was stated earlier.

Characteristics of a Bézier Curve

We now present some of the notable characteristics of a

Bézier curve:

1. Invariance under affine transformations of the points.
This is inherited from the de Casteljau algorithm which is a
series of iterated linear interpolations or, more to the
point, affine maps. The functional feature of this 1is as
follows- whether we compute the points b”(t;) and then apply
an affine map to them individually, or simply apply the affine
map to the control polygon and evaluate the polygon at the

values t,, the result is the same.

2. Invariance under affine transformations of the
parameters. Recall the transition between the arbitrary
interval [x,y] and the interval [0,1] is an affine map and
was done by introducing a parameter s, x < s <y, and letting
t = (s-x)/(y-x), where 0<t<1. Since the de Casteljau
algorithm uses ratios only, the interval is irrelevant. Thus

a Bézier curve may be defined on an arbitrary interval.
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bl b10

The control polygon determines the shape of the curve. Here we see the
different curves formed from polygons beginning at points b1 and b4, and

b7 and b10.
Figure 5. Various curves influenced by control point
location.
3. Pseudo-local control. A change in control point

locations has a fairly predictable effect on the curve. This
is because control points have the most influence on the curve
at the point t = i/n where the Bernstein polynomial attains

its maximum value. See Figure 5.

4. Only the first and last points or vertices of the control
polygon are on the curve, see Figure 5. This is referred to
as endpoint interpolation. In the case of a composite curve,

the end points of the segments are interpolated on the curve.

5. They satisfy a convex hull property. At no time in the
de Casteljau algorithm do we construct points outside the

convex hull of the b; because every intermediate point b/ is

a convex combination of points. As a consequence of this
property, a Bézier curve never oscillates wildly away from its

defining control points.
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6. Linear precision. This is another consequence of the

convex hull property. Suppose the polygon’s vertices b, are
distributed along a straight line joining points p, and p,.

Using the identity

for points b,, we find that

bj=(l—i)g-+ip2; i=0,...,n.
n n
The curve formed by this polygon will reproduce the straight

line between p, and p,.

7. The derivative of a Bézier curve is another Bézier curve.
This is proven by starting with the derivative of a Bernstein

polynomial:

-ditB;Wm = n(B (t) -BI 7 (E))

We can then determine the derivative of a curve b" as

follows:
d po(e) = o3 (BT} (£) -BIH(E) )b
de = *
where b, is a Bézier point. SinceBy(t) =0 ; ke {0,...,n} ,
we have
db“(t) = HiBi’:f(t)bk - n§ B ' (t)b, .
dt k=1 k=0

Reindexing and factoring we get
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n-1

d n _ n-1
—b (t) —n; (b,,, -b,) B (t) ,

which 1s the derivative of the curve b".

8. The curve 1s tangent to the first and last segments of
the control polygon. The m’th derivative of the first and

last points of a Bézier curve are given by

ok n! - i m

2 pr0) =2V (-1~ {Tp, ,
ac” (o) (n-m)lg( ! (l) '
d” po(1) = 2 }: <—1>1(“?)b_.
dcr (m=m) 1 4 1) i

We see therefore that for a curve b", the first derivatives
at the endpoints, b(0) = n(b,-b,) , b(l) =n(b, - b,_,), depend
upon the first and last segments of its control polygon.
Similarly, we could show that the second derivative at the end
points is determined by the first and last two segments and,
in general, the m’th derivative at an endpoint is determined

by its m adjacent control points (Farin, 1990).

C. CONTINUITY CONDITIONS

Thus far, most of our discussion of Bézier curves has
centered on a single Bézier curve segment. However, for many
applications, the need arises to piece or blend together
segments of several curves to form a composite curve. In
these cases, maintaining some type of continuity between the
joined curve segments 1is usually desirable. Parametric
continuity of order m, denoted C", results when the component
functions of a parametric curve are m times differentiable
with respect to the parameter and its given interval [a,b] .
A curve has geometric continuity of order m, G", when it is

m times differentiable with respect to arc length.
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bl b3 b6

bb
b0 b2 b4
(a) parametric continuity order zero, C°.
b1 b2
b6
b3
b0 b5

ba
(b} parametric continuity order one, c

Figure 6. Continuity conditions at joining points of curves.

For a composite curve to achieve C° continuity, it is
sufficient to reqguire one end control point from each of the
successive segments to be a common point. For C!' continuity,
the end slope of one segment will be required to equal the
starting slope of the succeeding segment. This means that for
the successive segments of the composite curve the joining
point between the segments is collinear with its adjacent
control points. Figure 6 demonstrates these situations.
However, although it does guarantee a continuously varying
tangent, the <collinearity of three control points 1is
insufficient to guarantee C! continuity. This is because C!
continuity relies on an interplay between range and domain.
Hence, without the curve’s domain information, statements on

differentiability cannot be made. The absolute value function

for a parametric curve x=1¢t3, y=|x|, te [-1,1], is a good
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example. This curve is ! but lacks continuity of the

tangent at the origin.
For most applications, a curve which has less

restrictive continuity conditions, such as G!' continuity,
continuously varying tangent with respect to arc length, 1is
adequate. Moreover, there is rarely a need to require better
than G? continuity, or continuously varying curvature. This,
in turn, means little requirement for curves of higher order

than cubic. (Pratt, 1986)
D. SUBDIVISION OF A BEZIER CURVE

Subdividing or splitting a curve is characterized by
replacing one curve with two or more curve segments of the
same type such that the graph of the resulting composite curve
is identical to that of the original. This is Jjust a

reparameterization or parameter transformation of the curve.
Thus, for a Bézier curve b" defined on the interval [0,1],
we now look to find two curves defined on the intervals [0, k]
and [k,1] .

We begin by looking at the interval [0,k] . If we define
a local parameter g = t/k on the interval, we see that g=0
corresponds to t =0, and g=1, to t =k. Consequently, we

have unknown points k,,k,,...,k,, corresponding to a Bézier

polygon on the interval [0,k] which defines a Bézier curve

k. Further, the curve 1is clearly a part of the original
curve b”. To find the points k, of the new polygon for the
curve k", we must look at the relationship between the

unknown k; and the known b;.

Since k" and b? are from the same polynomial curve,

their derivatives evaluated at g=t =0 must coincide. We
now recall that the endpoint derivative of a Bézier curve is

dependent only on the nearby control points. So to find the
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mth derivative of a curve b", we need points by,...,b,.
Further, if we look at the first m+1 control points of the
curves k" and b" as control polygons of two degree m Bézier
curves, we find that the curves are identical.

Because the curves agree in all derivatives up to order m

at g=t =20,
kIq) = bi(t) ; forall g,t.

This expression also holds when g=1 or t =k, that is,
ko' (1) = bg (k)
Since the endpoints of the control polygon for a Bézier curve
are interpolated, we have k¢(1) =k, = by (k) and have
established the unknown k;.
Another approach to finding the unknown k; uses the

tabular scheme, the de Casteljau scheme, mentioned earlier in

section B of this chapter. The form is as follows,
bO
b, by
b, bi b§
b, b bf by

where the points b,; 1 =0,1,...,n,, are the control points

of the curve b". To find the unknown k,, we simply pick off

the elements of the main diagonal, the by ; m=0,1,...,n.
This is because the k;, are just linear interpolants of the
points b;.

Graphically, we start by placing the points b; in the

first column of the table. Then, the subsequent entries in

the table are found by blending the entry directly to the left
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with the one to the left and above. This is comparable to the
method of Chaikin (Cavaretta, 1989) and the 1iterated
interpolation algorithms of Aitken and Neville. However,
where Neville uses the same blending scheme, Aitken builds the
table by blending the entry to the left and the first entry
from the column to the left (Burden, 1981).
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IV. IMPLEMENTATION
A. INITIAL GUESS ROUTINE

The first stage of the fitting algorithm is the assembly
of an Initial Guess (IG) curve. To begin, a set of ordered
data is placed into a 2 x n matrix or array, usually in a
MATLAB file (ie. data.m). The user then reads in the data
set, call it Q, and program "iguess" is called with Q as the
argument. The user is prompted for the number of knot points
or knots, P, which will initially be a subset of Q.
Additionally, the user is prompted for the knot positions, k.
These can either be manually entered or, by default, chosen by
"iguess".

The ultimafe goal of knot selection is to obtain a good
fit for Q (Foley, 1989) with a minimum number of knots. This
will Dbe discussed further in Chapter 5. The subroutine
"knots", called by "iguess" with arguments Q and k, picks out
the initial set of knot points, P.

The P are arguments to subroutine "dist" which returns a
set of distances, dt. The dt are computed using a standard
formula for the distance between two points, successive knot
points in this case, and are multiplied by one third. These
distances will be used to obtain the initial locations of the
interior control points in the IG curve’s control polygon.

Next, the angle(s), ang, for the unit tangent vector at
each knot point is/are calculated and returned when "iguess"
calls subroutine "tang". The wunit tangent 1is actually
estimated by subroutine “unitv" which fits a parametric
quadratic curve, using chord length parameterization, to five
data points as follows: if the knot point is the first or last
data point of Q, thus an end point for the curvé, the five
points will be the first or last five points, respectively,
from Q; if the knot point is an interior data point of Q, then

the five points will be the knot point and the two data points
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on each side of it. The angles of the unit tangents are used
to indicate the direction from the knot point to the adjacent
interior control points.

Next, subroutine “"ctpts" is called with arguments P, ang,
and dt. The subroutine reduces the angles into their x and y
components and multiplies them by the proper dt’s. These
quantities are added to and subtracted from the appropriate
knot points to find the set of control points, C, for the
curve which are then returned to "iguess'.

Finally, "iguess" sends Q, C, and P as arguments to
"pltC". This subroutine plots the cubic Bézier IG curve along
with its control polygon and the points in Q for analysis.
Also, the parameters for the IG curve (p, ang, and dt) are
assembled into a composite vector xi, called IGC (for initial

guess curve) in "iguess", and returned along with k to the

user.
B. SEGMENT-WISE OPTIMIZATION ROUTINE

The next stage of the algorithm is segment-wise
optimization of the IG curve producing what will be referred
to as a Segmentally Optimized Only (SO0) curve. This 1is
accomplished by optimizing the set of control polygons for the
distances, dt, which best position the interior control points
to define a curve that produces minimum distance error between
itself and the data points for the segment. The reason we
choose the dt‘’s is two-fold. First, if the knots, P, were
selected properly, they will be positioned to produce a curve
which mimics the progression of the ordered data. Second, the
tangent vector to the curve at each knot will not change at
this stage. Further, recall the control points, C, are
determined from P, ang, and dt, and, it is the control points
which govern the shape and behavior of the curve locally.

The user initiates segment optimization for the best dt’s
by calling the routine “"segop". With arguments of k, Q, and
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vector xi (IGC from "iguess"); "segop" first separates xi into
its subcomponents via "ktangdt". Next, "segop" calls
subroutine "bstdst" which uses the MATLAB optimization routine

“fmins" to optimize the segments.
1. Optimization Routine

The purpose of MATLAB’s optimization routine “fmins" is
to minimize a function of several variables. The algorithm is
based on the Nelder-Mead simplex search method (Nelder, 1965).
In their paper, Nelder and Mead noted the applicability of an
idea by Spendley et al. (1962) to the problem of minimizing a
mathematical function of several variables. The notion was to
track the operating conditions of a system by evaluating its
output at a set of points, thus forming a simplex in the space
of operations. By continuously reflecting one point in the
hyperplane of the remaining points and forming new simplices,
optimality could be achieved. The method 1s not based upon
gradients nor quadratic (second-order derivative) forms.
Rather, it is a highly opportunistic direct search method
relying only on the assumptions of continuity and a unique
minimum in the area of search. At no stage of the algorithm
is a record of past positions kept. For more information, see
(Nelder, 1965).

For the call x = fmins(’func’,x0), MATLAB returns a
vector x which locally minimizes func(x) near x0. The term
'func’ represents a string containing the name of the function

to be minimized. For x = fmins(‘func’,x0,options) and X =

fmins (’ func’,x0,options, [],pl,p2,...), the routine again
returns local minimizer x. However, now the routine uses a
vector of control parameters, ‘options’, for the algorithm.

Some of the ‘options’ may be termination criteria for x,
termination criteria for func(x), a maximum number for
iterations of the algorithm, and so on. The routine may use

‘options’ and possibly some of up to ten potential arguments
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to be passed on to the objective function, func(x,pl,p2,...).
The argument in the fourth position of the third expression,
the dummy argument, [], provides compatibility with routine
“fminu" found in MATLAB’s optimization toolbox. (Math Works,
1992)

When subroutine "bstdst® calls "fmins" to optimize the
dt ‘s for each cubic segment in the composite curve, "fmins" is
sent the string ’‘opdist’, standing for subroutine "opdist",
which will be the objective function. Also sent to "fmins"
are: the dt’s for each segment (one segment at a time), some
control parameters for "fmins", the dummy argument mentioned
earlier, and three arguments pertaining to the applicable
segment being optimized to pass to ‘"opdist". The three
arguments are: the subset of data points from Q, the two knot
points, and the two angles for the tangents at the knots.

Subroutine "opdist" passes the three arguments to "ctpts"”
which returns the control points of the segment. Together,
all the control points for the segment are sent as one
argument to the program "NearestPoint" which receives as its
other argument the points from the subset pertaining to the
applicable segment from Q, sent one at a time. "NearestPoint"
is an program written by Schneider (1990), modified by Dr.
Carlos F. Borges to enable MATLAB to interface C routines,
obtained from "Solving the Nearest Point-on-Curve Problem" and

vap Bézier Curve-based Root-Finder".
2. Finding the Distance from a Data Point to a Curve

"NearestPoint" solves the following problem in the plane:
for a given parametric curve C(t) and a point p, find the
closest point on the curve C to point p. Restated, the task
is to find the value of parameter t where the distance
between p and C(t) is minimized. We begin by noting that a

line segment joining p to C(t), the length of which we seek
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to minimize, will be perpendicular to the tangent of the curve

at C(t) . Therefore, we will seek a solution to the equation
[C(t) -pl-C(t) =0 . 4.1

In our case, C(t) 1is a cubic Bézier curve,
n

c(t) =Y k;B/(t) , te [0,1]
1=0

where the k,;’s are the control peoints and the B/ (t) 's are

Bernstein polynomials. Expressing the derivative of C(t) 1in

Bézier form, we find the tangent for the curve to be

Since C(t) , is degree three, we have C(t) -p also degree
three, and C(t) which is degree two. Therefore, Equation 4.1
is of degree five, generally. This means the problem boils
down to one for which there is no closed form for a solution:
finding the roots of a fifth degree polynomial. Thus, we turn
to Schneider’s technique and solve for the roots by using a
recursive algorithm after first converting the equation to
Bézier form. Once found, the roots are then evaluated to find
the points on the curve C(t) and the distances between these
points and the point p is subsequently calculated. Further,
the distances between the end points of the curve and the
point p are calculated and then all of the distances are
compared for a minimum. Thus, the parameter value t and the
point on the curve C(t) closest to the point p are found, as
desired. (Schneider, 1990)

"NearestPoint" returns the point on the Bézier curve
closest to the individual data points from the subset of Q for

the segment being optimized. The distance between these "near
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points" and their corresponding data points, error, 1is
calculated and summed over the entire segment. This error sum
is returned to "fmins" by the objective function "opdist".

Once the error sum is minimized, the best dt’s (called
bdt’s in the subroutine), for the control points for each
segment are returned to "segop". As the last step, "segop"
assembles the composite vector xi (called SOC, standing for
Segmentally Optimum Curve, in "segop") of parameters (P, ang,
and the new dt), and returns it for the SO0 curve.

The user calls routine "poplt" with arguments xi and Q.
This routine plots the SO0 curve, its control polygon, and the

data points for analysis.
C. GLOBAL OPTIMIZATION ROUTINE

The last stage of the algorithm is to globally optimize
the 800 curve producing what we call a Segmentally then
Globally Optimized (SGO) curve. It begins when the user calls
routine "globop" with arguments xi, Q, t, and k. The argument
t is a toggle to let the routine know if the knot sequence k

has been altered by inserting or deleting any Kknots. The
string ‘objf2’, for subroutine "objf2", is sent to "fmins" via
"globop" as the objective function for minimization. In

addition, "fmins" is sent: the vector xi to be optimized, a
vector of control parameters for the routine, the dummy
argument, and Q, t, and k as a fixed parameters to be sent to
“objf2".

The optimization process of "objf2" begins with the
subroutine separating xi into its components (P, ang, and dt).
These components are sent to "ctpts" which returns the control
points, €, for the curve. Next, "objf2" calls subroutine
"newk" with Q and P as arguments.

Since Q is ordered, the closest points on the curve must
be ordered in a like manner. This results in the requirement

to associate each data point from Q with a particular cubic
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segment . Thus, we avoid the error of computing distances for
a point to a closer incorrect cubic segment, as can happen
when the data turns rapidly back upon itself, forms spirals,
or makes a loop. Subroutine "newk" determines which data
points will partition Q into the subsets associated with the
various segments of the curve.

Initially, the points which divide the data set are the
knot points P chosen in "iguess". (Their positions, k, are
passed to "newk" via the global variable dpkpc.) In order to
find the new dividing points, Pn, which will divide the data
points, "newk" searches among the data points for the point
having the minimum distance from a knot point as follows: for
an interior knot, the search is among the data points on each
side of the knot excluding the previous and subsequent knots;
for the first and last knots, there is no search since the
first and last should be the first and last. Throughout the
optimization process, as the knots move, "newk" updates the
knot sequence for each iteration passing the subscripts of the
knots via dpkpc.

With the continuously updated knot segquence available,
"objf2" calls subroutine "sod" to compute the sum of the
squares of the distances between the points of Q and their
nearest respective points on the segments of the curve. The
square of the distances from the first and last data points to
the first and last knot points, respectively, is computed
directly to ensure that the curve starts near the first knot
point and ends near the last knot point.

subroutine "sod" receives arguments C, Q, and the updated
knot sequence, dpkpc from "objf2". Using "NearestPoint",
"sod" computes the distances between the "near points" on the
curve and their corresponding data points and sums the sqguares
of these distances. It then returns this sum to *objf2" to be
added to the squares of the distances for the first and last

points.
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The composite vector xi (called GOC for Globally
Optimized Curve in "globop") of parameters (P, ang, and dt)
which minimize the total sum of the squares of the distances
found in "objf2" for the entire curve is returned from "fmins"
to "globop" which in turn, returns xi to the user. The user
can then call "poplt", with xi and Q, as was done earlier, for

analysis.

Note: An IG curve could be, and is sometimes, globally
optimized in a likewise manner. We call this a Globally
Optimized Only (GOO) curve. This 1is done for reference

purposes usually.
D. SUPPLEMENTAL ROUTINES

There are generally two types of error encountered in the
fitting process. The two types are: excessive distance error
between the data points and the curve, and appearance error
where the curve has developed an undesirable feature such as
a cusp or corner where not desired. Hence, 1t may be
determined that some alterations and corrections are necessary
in the curve. In order to address these situations, the user
is supplied with the following routines: "err", "insrtkt", and

“rovkt".
1. Distance Error Checking

Routine "err" enables the user to check distance errors
between a curve and a set of data points. The tolerance oxr
threshold of error is determined by the user. The arguments
for "err" are: the composite vector xi of parameters (P, ang,
dt) for the curve, Q, and knot positions, k.

To determine distance error, "err" first calls "ktangdt"
to separate the composite vector into its subcomponents.
Next, "err" sends the P, ang, and dt as arguments to "ctpts'

which returns the control points, €, for curve. The C, along

38




with Q and k, are sent to "sod" which returns the sum of the
errors. 1In turn, "err" returns the total distance error for
the curve.

Routine "err" can determine error for an individual
segment of the cubic Bézier curve as well. To do so, the user
simply uses some of the subroutines previously described in
this chapter and calls "err" with the applicable components.

2. FKnot Insertion and Removal

Routine "insrtkt" enables a user to insert a new knot in
the knot sequence of a Bézier curve without altering the shape
of the curve. However, before initiating the routine, two
gquestions need to be answered: (1) Upon which segment will the
knot be inserted? and (2) At what point along the segment will
the knot be inserted? The user calls "insrtkt" with a segment
number, and distance along the segment (i.e. "1/2" for half
the distance, "3/4" for three guarters of the distance, and so
on...), composite vector xi, Q, and k.

The routine begins by separating the parameters of xi via
subroutine "ktangdt". Next, "insrtkt" calls "ctpts" with the
knot points, angles, and distances for the affected segment
and "ctpts" returns the segment’s control points. Next,
ninsrtkt" calls subroutine "fndpts" with the control points of
the segment and the distance along the segment where the new
knot point will be inserted.

Incorporating an interpolatory subdivision algorithm,
"fndpts" computes the new set of control points for the
segment . It then assembles the values of the new control
points and returns them to "insrtkt". Note: The new control
polygon will reproduce the cubic Bézier curve segment of the
original polygon whose control points were just subdivided.

Next, "insrtkt" separates the new control points into
their x and y components. Then, intercomponent distances are
found, angles for the tangent at the new knot point computed,
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and the distances from the new knot point to its adjacent
control points computed. Finally, the knot points, angles,
and distances are assembled and returned as a composite vector
xi, along with the new knot positions nk. The user calls
routine "poplt" with xi, and Q for a plot of the curve, the
new control polygon, and the data points for analysis.

Removing a knot point from a curve is a less complicated
process. It should be pointed out that in a set of n knot
points, only knots two through n-1 should be removed. (The
reason for this is obvious.)

The user calls routine "rmvkt" with inputs of which knot
point is to be removed (i.e. "2" for the second, "3" for the
third, and so on) and the composite vector xi. The routine
separates the components of xi via "ktangdt". Next, "rmvkt"
simply removes the knot point and its associated angles and
distances from their respective "vectors" by dropping the
appropriately indexed subcomponents.

To merge the components from the two affected segments
into one segment, "rmvkt" calls "ctpts" with the knot points
that were on each side of the removed knot point, the
associated angles for the tangents, and the distances at those
knot points. Next, "ctpts" returns the control points for the
new "merged" segment.

Routine "rmvkt" separates the x and y components of the
new control points and computes their intercomponent
distances. These intercomponent distances are then used to
compute the distances for the control points of the new
segment. The computation is based on the ratios that would
have occurred in the de Casteljau algorithm if the two
segments being merged had came from one segment, see Figure 7.
The control point distances are then inserted into the vector
of distances and "rmvkt" combines the knot points, angles, and
distances into a composite vector xi which is returned along

with the new knot positions nk.
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To find distance for new

N control point ¢l from K1:
8 b, d = ({a+b)ia)-{c) -
k2 w - .

d _ can use similar technique
A to find distance for ¢3 from
C K3.

4
k1 K3

After removing k2, we treat the segment between k1 and k3 as if it had
been one segment and been subdivided by de Castlejau’'s algorthim.

Figure 7. Finding new control point distances after removing
a knot point.

The routine "poplt" may then be called to plot the curve,
its new control polygon, and Q. Unlike the result obtained by
inserting a knot, knot removal will likely change the curve
slightly. This is due to the fact that in most cases the
graph of two adjacent segments of a curve is not the graph of

a single cubic curve.
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V. RESULTS, CONCLUSIONS, AND RECOMMENDATIONS
A. RESULTS

Three data sets were selected with various fitting
challenges. In the results that follow, we see the cubic
Bézier curves fitted to those data sets and the errors of the
fits. The curves for each data set are in the following
order; initial guess (IG), globally optimized only (GOO),
segmentally optimized only (S00), and then segmentally and
globally optimized (SGO). Rms error, in the form of arbitrary
"units", representing distance summed between the curve and
data points 1s noted for the various curves. For
demonstration purposes, a fourth data set was chosen to

feature the effects of knot insertion and removal.

1.5 T T T T T T

0.5

-1k E

-1.5¢ .

2t ]

_2.5 1 1 X 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 8. IG curve, k = [1 22 43 64].
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The first data set contained 64 data points forming a
spiral. It presents a problem similar to that of Marin and
Smith (1994) in fitting a parametric curve to analytically
represent the shape of a cross section of a machinery
component. Figure 8 is the IG curve. The number of knots in
the knot sequence is a result of trial and error in finding
the minimum, in this case 4, which will later yield a "good"
fit to the data set. Tt is clearly not a good fit by any
means. However, as will be seen in a moment, it 1s a pretty

good starting point. The rms error was 0.5042 units.

15 T T T T T T

-1.5¢

-2F -
-2. : , ! : : :
-2 -1.5 -1 -05 0 0.5 1 1.5
Figure 9. GOO curve, k = [1 21 41 64].
Figure 9 i1is the GOO curve. The fit i1is arguably

reasonable and representative of the data set. The rms error
is 0.0224 units. We observe that the curve meanders in and
out of the path of the data points on the outer ring of the
spiral while closely tracking the inner ring. Also noted, is

the movement of the interior knot points.
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Figure 10.

Figure 11.
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SO0 curve, k = [1 22 43 64].
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Figure 10 is the SO0 curve. This is verified by checking
the knot locations are the same as in the IG curve. The rms
error is 0.0400 units and is representative of the "slack"
observed between the data points and curve. Figure 11 is the
5GO curve and its rms error is 0.0205 units. We see the curve
tracks along the overall path of the data points more closely
than the curve in Figure 9. Note: the algorithm converged to

a solution at all stages.

6 T T T T T T

_6 1 i) L 1 1 1
0 2 4 6 8 10 12

Figure 12. IG curve, k = [1 8 15 22 29 37 44 51 58 65].

The second data set is 65 points forming the letters
"EJ". It presents the difficulties of multiple loops and a
naturally formed cusp. The IG curve with 10 knots 1is
displayed in Figure 12. The fit is fairly consistent with the
trends in the data and has an rms error of 0.3125 units. We
see the curve has no cusps, corners, or kinks.

Figure 13 is the GOO curve. The rms error is 0.0586
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units but the curve is unsatisfactory. The problem area is
an undesirable cusp in the top loop of the "J". This was
caused by two control points having what appears to be
coincident tangents in the same direction out of their common

knot point.

6 T T T T T ] T

A 2 4 6 8 10 12
Figure 13. GOO curve, k = [1 6 16 18 31 35 43 50 59 65].
The SOO curve appears in Figure 14. For the most part,

the curve tracks the data points nicely. It has an rms error

of 0.0642 units. We see the desired cusp is forming in the
middle region of the "E". Also, we see a problem area in the
loop at the top of the "E". This is a kink or ‘Ycornering"

effect due to near coincidence of a knot and control point and

the pulling effect of the adjacent control point.

47




Figure 14.

Figure 15.
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Figure 15 is the SGO curve fitted. The curve again
tracks the data nicely. Its rms error is 0.0369 units. We
see in the upper loop of the "E", where the problem area was
in the SO0 curve, the cusp or "cornering" still exists but is
diminished somewhat by the movement of the adjacent control
point. Note: the algorithms converged in all stages except

for the GOO curve.

-8

-10.5¢
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Figure 16. IG curve, k = [1 4 13 23].

The third data set contains 23 points and presents the
unigue demands of fitting some data found in a laboratory
experiment on a reacting chemical system with potential
multiple steady states. The experiment samples the steady
state oxidation rate R achieved by a catalytic system for an

input concentration of carbon monoxide C_,. The resulting

data is plotted as log-vs-log. For more information see

(Marin, 1994).
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Figure 16 shows the IG curve found for the data set using
4 knots. The curve captures the trend of the data points and
has an rms error of 0.0934 units. Figure 17 shows the GOO
curve. The rms error is 0.0449 units with the second segment
making the most contribution. We see that the peak of the
curve appears to form a cusp and is short of the highest data

point and that many data points are missed.

T T T T

-10.51

1 Il 1

- -8.5 -8 7.5 -7

Figure 17. GOO curve, k = [1 5 10 23].

We next see the fit of the SO0 curve in Figure 18. It
has an rms error of 0.0177 units. We see the curve is
following the path of the data nicely and misses very few.
Finally, Figure 19 displays the SGO curve. The rms error is
0.0114 units and, as can be seen, the curve is a "good" fit to

the data points.
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Figure 18. SO0 curve, k = [1 4 13 23].
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Figure 19. SGO curve, k = [1 4 12 237.
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1. Knot Insertion and Removal

We now look at a data set of 23 points representing a
single loop. Figure 20 is a SO0 curve for the data set. It
captures the shape of the data set rather well and has an rms
error of 0.2492 units. Although this curve would likely lead
to a "good" fit, we want to alter the knot sequence by

inserting and deleting some knots.

20 T T T T L} T T

18 1
16} ]
14t + y
12} . .

101 4

24 6 8 10 12 14 16 18 20

Figure 20. SO0 curve, k = [1 9 17 23].

We believe the curve could potentially fit the second
segment better. Therefore, we insert another two knots along
the second segment. Further, we insert one knot on the third
segment to facilitate removing the knot at position 17. We
then remove the two original interior knots. Figure 21 is the
resulting curve. We see the most change to the curve occurs
along its lower path. This is because more control was placed
along the top of the curve while it was relaxed at the bottom.

The rms error is 0.6587 units.
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Figure 21.

Figure 22.
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Altered curve, k = [1 12 15 19 23].
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800 curve, k = [1 12 15 19 23].
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Figure 22 is the SO0 curve. The fit is better and has an
rms error of 0.2339 units. We now globally optimize this

curve.

181

16

14+

10f

24 6 8 10 12 14 16 18 20

Figure 23. SGO curve, k = [1 9 13 19 23].

Figure 23 is the SGO curve. It is a "good" fit and has
an rms error of 0.1249 units. We see the second and third

knots moved quite a bit in the global optimization stage.
B. CONCLUSIONS AND RECOMMENDATIONS

The method shows promise of being able to fit a set of
ordered data with a "good" approximating curve with minimal
user interaction. Some recommendations toward reaching this
goal are: an improved knot selection routine, improvements in
the knot insertion and removal routines, implementing an
affine invariant metric on the objective functions for
optimization, and gearing the optimization routine more toward

the problem at hand.
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The current algorithm works well provided a good sequence
of knot positions are selected in the initial guess stage.
The number of knots and their positions is a function of the
complexity of the underlying the relationship between the data
points and the shape limitations of using cubic Bézier curves.
For example, in a given cubic Bézier segment, the curve can
have at most one loop, one point of inflection, one cusp, Or
one "corner". Hence, if a data set had a loop and cusp along
its ordered path, a minimum of six knots would be required for
an adequate fit. Therefore, a routine could be implemented
that accounts for maxima, minima and variations in the data
when selecting the knot points.

The knot insertion and removal routines are limited to
one insertion or deletion at a time. These routines could be
altered to allow multiple changes to occur simultaneously.
Further, the removal routine could be improved so that it
reproduces the original curve more closely.

The current objective functions for the optimization
process rely on orthogonal distances. Since orthogonality is
not affinely invariant, a metric could be induced like that of
Nielson (1987) which would make the objective functions
affinely invariant.

The optimization routine sometimes converges to an
undesirable solution (i.e. the curve has kinks and cusps), or
converges slowly, or does not converge at all. The problems
of kinks and cusps could possibly be cleared up by use of some
"penalty" terms in the objective functions when these
conditions are encountered and are not desirable. The
convergence problems could be improved by implementing an
optimization routine based on nonlinear least squares fitting

techniques.
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[xi, k] =iguess{Q); user man. input
knot posits.

I k L( defk.m

iguess.m P

)

)

(knots.m )
)
)

APPENDIX: PROGRAMS

dt
( dist.m
ang
(tang.m
uv
C

xi =[P ang dt];

and k.

plot of curve

/"_“’\\_,-/

Flow Chart 1. Initial Guess
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xi = seqgoplk.Q ., x0};

xi=[P ang di];

I C
popltfxi, QJ; —'@lt_.m ) plot of curve

( ktangdt.m )—

i N\ P, ang, dt p
SEQoOp.m k_ Hangdt.m )
bdt
( )
L bstdst.m
bdt [ one seg. @ a time)
' fmins )
Seq. error
‘npdist.m )
np
(NearcstPuint) (he'"‘k'-m )
ts.

P, ang, dt

Flow Chart 2. Segment Optimization
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xi = globop [x0, Q, t, k0);

error sum

globop.m

xi=[P ang dt];
|
poplt [xi, Q});

dpkpc

P, ang, dt

ktangdt.m

i

ctpts.m

é

sum error  ( sod.m

for curve

np

( NearestPoint

)

plot of curve

Flow Chart 3. Global Optimization

59




function [IG,k] = iguess(Q)

function [1¢,k]l=iguess(Q). This routine takes a set of data points, O;
picks out a subset of the data points for knot points,P; computes the
position of the knot points,k; computes the initial distances, dt, to
place the interior contrel points, C, which are also computed; computes
the angles, ang, of the unit tangent vectors at each knot point; and
assembles the vector IG of parameters P, ang, and dt, for the curve.
The routine returns the "vector® of parameters and plots the curve,

its polygon, and the data points in Q. It was written by M. R. Holmes
and revised by E. J. Lane.

GO 60 gP GO GO GO gt gO go

gleobal dpkpe;
[r,m] = size(Q);
diap ('Give the number of knotpoints.’)
no= input(’ )i
digp (' Type "1 for default knot position or "2" to input your own.’)

h

il

input(’ ");

if h == 1

1

X = defk(m,n); % Calls for default knot position.

elgeif h == 2

1]

disp(Input initial knot seqguence as follows "[1 4 8 ...nlJ".")
k = input(’ ')
elseif h ~= 1 | h ~= 2
digp (/Error! Start over and chooge "1" or "2".’),pause(2)

igues

Ui

end
dpkpe = k; % Position of knot points passed globally.
P = knot=s(0,k); % Call to compute the knotpoints.

Call to compute the distance between
successive knot polinta.

dt

dist (P);

60 6o

Call to compute the angles for

ang = tang(Q,k);
the unit tangent vectors.

00 go

¢ = ctpts(P,ang,dt); % Call to compute the control points
2for the curve.
pltc(c,Q,P); % Call to plot the initial guess curve,

% its control polygon, and points in Q.

[P(l,:) P(2,:) ang dt(1l,:) dt(2,:)};

IG =
% Assemble the composite vector of the initial guess curve parameters.
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function k = defk(m,n)

Computes default knot positions for iguess.m based on a
formula to equally disperse the knots throughout the data.

0P 0P

o

= round(((m-1)/(n-1))*[0:n-1] + ones(1l,n));

function P = knots(Q,k)

function P = knots(Q,k). This function takes data points Q
and knot sequence vector k and picks out the knot points
of the curve.

o0 o0 o0

p=[1; P=[P Q(:,k)];

function dt = dist(P)

function dt = dist(P). This function computes the initial
distances from the knot points to their adjacent control
points for the initial guess curve. It returns the wvector
of distances to iguess.m. The function was written by

E. J. Lane.

00 o° o 0P o°

t=length(P);

dl = P(:,1:t-1) - P(:,2:t); Calculates inter-knot

x and y difference values..

o o

dz2

sgrt (sum(dl1.72))/3; % Computes the initial distances.

dt [d2;d2]; % Assembles the vector of distances.
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|
function ang = tang(Q,Kk)

function ang = tang(Q,k). This function computes the angles
for the unit tangent vectors at the knot points.

o oP

= unitv(Q,k); % Call to compute unit tangents.

o

ang = atan2(u(2,:),u(l,:)); % Converts tangents to angles.

]
R
function uv = unitv(Q, k)

function uv = unitv(Q,k). This function takes data points,

0, and the position of knotpoints, k, as input variables.

It uses chord length parameterization to fit a parametric

quadratic curve to five data points. The unit tangent vec-

tors are approximated by the unit tangent vectors for these
quadratic functions. It returns the set of unit tangent

vectors in the direction of the knot points. It was written
by M. R. Holmes

P 0° 00 O O° o0 o0 oP

[r,m] = size(Q); n = length(k);

for j = 1:n % Loop to index knot positions.
if § == 1, k(j) = 1; kt = 1;
elseif j == n, k(j) = m-4; kt = 5;
else k(j) = k(j)-2; kt = 3;
end
X = Q(1,k(3):k(3)+4)"; % Extracting the knot point
y = Q(2,k(3):k(3)+4)"; % and four adjacent points.
xd = diff(x); vyd = diff(y); % Get chord length.
d = sqgrt( xd.*xd + yd.*yd);
t(l) = 0; t(2) = d(1);
t(3) = t(2) + d(2);
t(4) = t(3) + d(3);
£(5) = t(4) + 4(4);
c = [ones(5,1) t' (t.*t)']1 \ [x vyl:
u =c(2,:) + 2*c(3,:)*t(kt); u = u/norm(u);
uv(:,j) = u’; % Approximation of unit tangents
% by unit tangent to guadratic.




;
function C = ctpts(P,ang,dt)

C = ctpts(P,ang,dt). This function takes knot points,P; angles
of the tangent vectors, ang; distances between successive knot
points, dt; as input. It then computes the positions for the
control points. It was written by M. R. Holmes.

00 00 o 0P

n = length(P);
for k = 2:n-1

= {cos(ang(k)) ; sin(ang(k))]:
Converts the interior angles into their x and y components.

o0 C

=3
I

[T P(:,k)-u*dt(2,k-1) P(:,k) P(:,k)+u*dt(1,k)1;
% Assembles the vector knot points with their
$ adjacent interior control points.

Converts the first and last
angles into their x and y
components.

[cos(ang(l)) ; sin(ang(1))];
[cos(ang(n)) ; sin(ang(n))];

o
o]
nu

00 00 o°

P(:,1) P(:,1)+ul*dt(1,1) T P(:,n)-un*dt(2,n-1) P(:,n)];

(
Assembles the vector of all control points.

[
%

/
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function graf = pltC(C,Q,P)

function graf = pltC(C,Q,P). This function takes as input:
control points,C, data points,Q; and knot points, P. The
control points are used to calculate the points of the
approximating cubic Bézier curves. The control, data, and
knot points are then plotted along with the curve.

This was written by M. R. Holmes.

o0 0P OC P 0P o

[s,t] = size(C);

x = [0:.025:1]; % Defines the interval for the polynomial.
[a,b] = size(x);
W [ 1: % Loop to construct the Bézier curve.

for j = 1:3:t-3
Y = zeros(2,b);
M = [berny(3,0,x)’ berny(3,1,x)’ berny(3,2,x)’ berny(3,3,x)'];
Y + C(:,J:3+3) * M’ ;
(W YI;

W n

Y
W
end

plot{( W(1,:) , W(2,:) ) , hold

plot( C(1,:) , C(2,:) )

plot( O(1,:) , Q(2,:) , "+")
plot( P(1,:) , P(2,:) , 'x")
plot( C(1,:) , C(2,:) , '0')
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X ——

function val = berny(n, i, x)

This function is a non-recursive formula for cubic Bernstein
Polynomials which form the basis for the cubic Bézier curves
which are used in the supporting programs. The inputs are the
degree of the polynomial, n; the particular curve that is ass-
igned a value of zero up to and including the degree, i; and
the points between [0,1] to be evaluated, x. The output is

o0 o0 00 O o 0P o

points on the curve. It was written by M. R. Holmes.
ni = [1331]; m = size(x);
ifn< i
val = zeros(m);
elseif 1 < 0
val = zeros(m);
elseif ((n == 0) & (i == 0))
val = 1;
else
val = ni(i+1) * (x.”i) .* ((ones(m) - x) ."{(n-1i));

end
_
—

function SOC = segop(k,Q,x0)

function SOC = segop(k,Q,x0). This function returns the
parameters for the segmentally optimal composite curve.
It receives the .IG curve parameters, x0, data points Q,
and knot sequence k. It was written by E. J. Lane.

00 00 00 o°

[P,ang,dt]=ktangdt (x0); % Separates the vector x0
% into its subcomponents.

bdt=bstdst (dt,Q,P,ang,k); % Call to the function which finds
% the optimum distances for a segment.

for i =1 : 2 % Loop to assemble the "best" distances.
bdtl = [bdtl bdt (i, :)];

end
SOC = [P(1l,:) P(2,:) ang bdtl];

% Assemble the vector of parameters
% for the curve.

end
e
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function [P,ang,dt] = ktangdt(x)

function [P,ang,dt] = ktangdt(x). This handy function separates
the composite vector, x, of parameters for a curve into the sub-
components of knots, P, angles, ang, and distances, dt. It was
written by E. J. Lane.

00 o0 0P 0P

m = length(x); n = round(m/5);

P(1l,:) = x(1:n); % knots.

P(2,:) = x(n+1:2%n);

ang = x(2*n+1:3*n); % angles.

de(l,:) = x(3*n+l1:4*n-1);

dt(2,:) = x(4*n:m) ; % distances.

[ P S
e e ]
function bdt = bstdst(id, Q, P,ang, k)

This function finds the optimum distances for control point
placement along the segments of a curve. The applicable points
from Q, the two knots, and two angles for each segment are
passed to opdist.m through "fmins". It was written by E. J. Lane.

00 00 0P o0

opts = [0,.01,.01]; % Control parameters for "fmins".
n = length(id); bdt=[];
for i =1 : n

bdt(:,i)= fmins(‘opdist’,id(:,1i),opts,[],...
O(:, k(1) :k(di+1)),P(:,i:i+1),ang(i:1+41));

end
[PRmmeeR R e
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function se2 = opdist(id,Q,P,ang)

function se2 = opdist(id,Q,P,ang). This function is the obj-
ective function to be minimized during segment optimization.

It receives subcomponents from a curve’s composite vector, a

segment at a time. It returns the sum error for a segment.
It was written by E. J. Lane.

00 0P o0 o0 o0

n = length(Q);

C=ctpts(P,ang, id); % Call to compute the segments

% control points.
se2=0;

for 3 =1 : n

Loop to find
np = NearestPoint ( C’

14

Of(:

(37

o0 o0 o°

distance error
in a segment.

if j==1 &

np::

(:

)

d=zeros(1l,2);
elseif j==n & np==

d=zeros(1,2);
else

d =
end
se2 =

(:,4)'

(QC:,3)"
se2 + d*d’;

- np);

end
s e e
R - 2

function pop = poplt(x,Q)

function pop = poplt(x,Q). This function picks out subcomponents
of the vector x of curve parameters. It calls the function that
computes the control points. It then calls for a plot of the curve

its polygon, and the data points. This was written by M. R. Holmes
and revised by E. J. Lane.

00 00 0P 0P 0P

[P,ang,dt] = ktangdt(x); % Separate vector x.

C = ctpts(P,ang,dt); % Call to compute the control points.

pltC(C,Q,P) % Call to plot the curve,

polygon, and data points.
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function GOC = globop(xi,Q,t, k)

function GOC = globop(xi,Q,t,k). This function returns a vector
GOC of parameters: knot points, P, angles, ang, and distances,
dt, for a globally optimized Bézier curve. Its inputs are

the curve parameters in vector xi , data points, Q, toggle, t,
"1" if a knot was inserted or removed, "0" otherwise , and the
knot sequence, k. The MATLAB routine "fmins" optimizes function
objf2.m which computes the sum of the distances between the data

0 00 0P o G° 0P o o0 oP

points and their closest point on the curve. It was written by
E. J. Lane.
GOC = fmins(‘ocbjf2’,xi, [0,.01,.013,[],0Q.t,Kk);

#
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A e e s !
function se = objif2(x,0,t, k)

function se = objf2(x,Q,t,k). This iz the objective function that
will be minimized by "fmins". The input arguments are the vectol X of
parameters for the curve, data points Q, a toggle t if a new knot has
heen ingserted or one removed, and the knot secuence, k. The output inm
the sum from the function "sod" plus the distance sguared from the
firet and last data points to the first and last knot polnts, respec-
tively. This was written by M. R. Holmes and revizsed by E. J. Lane.

G0 g g0 g¢ 50 g0 oo

global dpkpc

if £t ==1 % Loop to change dpkpe if a knot
dpkpe = k; t = 0; % was inserted ov removed.
glohal dpkpe

end

if € == 0

global dpkpc

[r,sl = s3ize(Q);

(P,ang,dt] = ktangdt(x); % Call to separate x into its subcomponents.
¢ = ctpts(P,ang,dt); % Call to compute control pointe.

dpkpe = newk (Q,P); Calls function that computes the
e

new dividing point positions.

m = length(x);
n = round(m/5);
fp = P(:,1) - Q{(:,1); % Computes distance scuared
1p = P(:,n) - Qf:,s); % from the first and last data points to
2 the first and last knot points, respectively.
se = 20d(C,Q,dpkpe) + fp/*fp + 1p’*1lp ;
2 (allgz the function that computes the sums of the square
e of the distances from the data points to the nearest point
2 on the cubic segment.
end
end
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function nk = newk(Q,P)

% function nk = newk{Q,P). This function takes data points, 0,and
% knot points, P, as input. The function finds the closest data
% point of the cubic segment that is associated with that knot
¢ point, and returns a new k-array, nk. It ensures the data points
% of Q are properly associated with the proper segment of the curve.
¢ "dpkpc" is a global variable that is initially egual to the old
% k. This was written by M. R. Holmes and revised by E. J. Lane.
global dpkpc
[r,m] = size(Q);
[s,n] = size(P);
nk(1) = 1; nk(n) = m; % Ensures the knot sequence starts and
¢ ends with the 1lst and last points in Q.
for i = 2:n-1
js = dpkpc(i-1); je = dpkpc(i+l); % variables to pick out
jm = dpkpc(i); % interior knot positions.
z = je-je+l; mm = jm - js + 1;
R = 0(:,js:je) - P(:,1) * ones(l,z); % Finds differences
% between data points and
% knot point being checked.
for jj = 1:2
D(j3) = R(:,33)" * R(:,33); $ Ensures differences are
end $ positive for comparison.
if mm < 2z
sd = sign( D(mm) - D(mm+1) ); % Compares for smallest
% difference to find
elseif mm > 1 % new dividing points.
sd = sign(D(mm-1) - D{(mm));
else
sd = 0;
end
while Df(mm) - D{(mm+sd) > 0
if mm == 2 & sd < 0O
break, end
,if mm == m-1 & sd > 0
break, end
mm = mm + sd;
end
nk(i) = mm + js - 1; % knot positions.
end

dpkpc = nk; % knot positions or sequence.

—
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function sumd = sod(C,Q,dpkpc)

function sumofdist = sod(C,Q,dpkpc). This function receives inputs:
control points,C, data points,Q, and the dividing points or knot
sequence. It finds the closest point on the curve for a given data
point and computes the distance error. The function returns the
sum of the distance squared from the data points to their nearest
point on the curve segment. This was written by M. R. Holmes.

00 0 o0 0P 0P 0P

n

length(C); [r,s] = size(Q);

y = dpkpc;

cntr = 0;

sum = 0;

Loop to find distances from
data points to closest point
on the curve.

for i = 1:3:n-3
cntr = cntr + 1;
for j = yv(cntr):y{cntr+l)

o0 00 o0

np = NearestPoint( C(:,1:1i+3)’, ©(:,3)");

d=(Q(:,3)" - np ); v

sum = sum + d * 4d’; Note: NearestPoint is a MATLAB

if j == y(entr) & i>1 interface program written by
d2 = d*d’; Dr C. Borges for some "C" rou-
ds2 = ds*ds’; tines obtained from ‘Solving

the Nearest Point-on-Curve
Problem’ and ‘A Bézier Curve

dm = max(d2,ds2);
sum = sum - dm;

00 0P o A0 O° O O P o°

end Root-Finder’ developed by P.J.
end Schneider in "Graphics Gems",
ds = d; Academic Press, 1990.

end
sumd = sum ;

0
[

function error =err(x0,0Q,k)

error between the curve and the data points in Q. It was
written by E. J. Lane.

¢ function error = err(x0,Q,k). This function takes a composite
$ vector of curve parameters x0, separates them and computes the
$ control points for the curve. It then computes the sum of the
%
%

[P,ang,dt]=ktangdt (x0); % Call to separates x0
% into its subcomponents.

C=ctpts(P,ang,dt); % Call to compute control points.

error=sod(C,0Q,k); % Call to compute distance
%error for the curve.
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function [xi,nk] = insrtkt(seg,h,x0,k,Q)

function [xi,nk] = insrtkt(seg,h,x0,k). This function receives the
segment number, seg, to have the knot inserted, the position along
the segment, h, where it will be inserted, and the vector, x0, of
parameters for the curve, and k, the knot positions. It inserts a
new knot on the segment called for and then returns the new vector
of parameters for the curve and knot positions. Note: the curve
will remain the same, the polygon will be changed. This was
written by E. J. Lane. '

a0 O O° 0P o o0 d° o

[P,ang,dt] = ktangdt(x0); % Separates x0 into its subcomponents.
g = length(k);

Cseg = ctpts(P(:,seg:seg+l),ang(seg:seg+l),dt(:,seg)); % Computes
% the control points for the affected segment.

z=fndpts (Cseg,h); % Call to compute new control points for the

% segment where the knot is inserted.
xs=z(1l,:); ys=2(2,:); Separates the new segment’s control
points into their x and y components.

g
)
o

dx=diff (xs); dy=diff(ys); % Finds the intercomponent differences.
angs=atan2 (dy,dx); % Computes the angles for the tangent vectors.

dl=sqgrt(dx(1)"2 + dy(1)"2); % Computes distances for

$ control point locations.
de=sqgrt (dx(6)°2 + dy(6)"2);

dm=sqgrt(dx(4)"2 + dy(4)"2);
dn=sqrt(dx(3)7°2 + dy(3)"2);

Pnew = [P(:,l:seg) z(:,4) P(:,seg+l:length(P))];

)
Inserts new knot into knot component vector.

’
o
°

angnew = [ang(l:seg) angs(4) ang(seg+l:length(ang))];:
¢ Inserts new angles into tangent angles component vector.

dtnew = [dt(:,1l:seg-1) [dl dm;dn de] dt(:,seg+l:length(dt))];
% Inserts new distances into distance component vector.
av = 0(:,k(seqg):k(seg+l)) - z(:,4)*ones(l,k(seg+l)-k(seg) + 1);

ds =dv.*dv; dg=sum(ds); [dmin, knew]=min(dq):;
ink = k(seg) + knew - 1; With previous 2 lines
finds the new knot’s position.

nk New knot sequence.

00 o o

[k(l:seg) ink k(seg+l:q9)];

xi [Pnew(l, :) Pnew(2

,:) angnew dtnew(l,:) dtnew(2,:)];
% Assembles the new components vector for the
% parameters for the curve.

[ P S
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function x = fndpts(z,h)

function x = fndpts(z,h). The inputs are a vector z of control
points for a segment of a curve and a step size h. The function
separates the control points into their x and y components and
then uses a de Casteljau or Chaikin scheme to compute new control

points which will produce the same curve. It was written by
E. J. Lane.

00 O 0 00 AP o

[m nl=size(z); M=zeros(n); N=zeros(n);

=

[

-
Inn

z(1,:)’; % Separates the control points
z(2,:)'; % x and y values.

Loop which performs the computation
of new control point X and y values.

o o0

h);
h);

*
*

zZ =
O
no

(1,3-1) - M(i-1,3-1))

1,3 N(i-1,3-1))
end

end

x=[diag (M)’ (rot90(M(n,1l:n-1)))’; diag(N)’ (rot90(N(n,1l:n-1)))"];
% Assembles the vector of new control points.
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function [xi,nk] = rmvkt(kt,x,k)

function [xi,nk] = rmvkt(kt,x,k). This function takes inputs of
which knot, kt, to remove, vector, x, of curve parameters, and kt
sequence, k. It removes the knot, its angles, and its distances
from the subcomponents of x, removes the index of the removed
knot from k, then finds the knots that were adjacent to the one
being removed, and constructs a new polygon for the "blended"
curve segment. This was written by E. J. Lane.

o0 O 00 AP° o o o°

[P,ang,dt] = ktangdt(x); % Separates the components of x.

n = length(P);

Pnew=[P(:,1l:kt-1) P(:,kt+1:n)]; % Removes the knot.

nm = length(ang):;

angnew=[ang(:,1:kt-1) ang(:,kt+l:m)]; % Removes the knot's angles.

length(dt) ;
length(k);

p
q

o

nk = [k(l:kt-1) k(kt+l:q)]; % Get rid of removed knot in sequence.

Cseg:ctpts(P(:,kt—l:kt+1),ang(kt—l:kt+l),dt(:,kt—l:kt));

% Computes the control points for the blended segment.

xs=Cseg(l,:); ys=Cseg(2,:); % Separates the x and y components.
dx=diff (xs); dy=diff (ys); % Gets the differences in the x's, y's.
dm=sgrt (dx(3)"2 + dy(3)"2);
dn=sqrt(dx(4)"2 + dy (4)"2); % Computes distances for the control
dmn=dmn+dn; % points on the blended segment.
dt (1,kt-1)=dt(1,kt-1)*(dmn/dm) ;
dt (2,kt)=dt (2,kt) * (dmn/dn) ;

% Assembles the distances.
dl= dt(1,:); d2= dt(2,:);
dl1=[d1(1:kt-1) dl(kt+1l:p)]l; d22=[d2(1:kt-2) d2(kt:p)l;
dtnew=[dl1l ; d22];
xi = [Pnew(l,:) Pnew(2,:) angnew dtnew(l,:) dtnew(2,:}];
Assembles the composite vector of parameters for the curve.

1
%

R P S
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